
SOLUTION OF A TWO-DIMENSIONAL HEAT-CONDUCTION 

PROBLEM FOR A SECTOR 
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We consider a problem for the Laplace equation in a circular sector wherein 
heat exchange takes place on the sides of the sector in accordance with New- 
ton's law and a temperature distribution is specified on the circular arc. 

In the plane of the complex variable w let D denote a circuiar sector of radius r , 

and central angle T/m, where m is a positive integer: 

D =  w=rexp(i~p):rE(O, 1), ~E 2 m '  2m " (I) 

We can represent the boundary 8D of domain D in the form ~D : ~ U r, where 1? = / w 
2 

r exp 

:rE[O, 11 , i s  t h e  u n i o n  of  t h e  s i d e s  o f  t h e  s e c t o r  and F =  w =  exp(iq~):qD 6 2m'  

is the arc of the sector; D is the closure of domain D; w' are points of arc r. 

In the sector D we consider a stationary heat conduction problem involving heat exchange 
on the sides of the sector (on 7) in accordance with Newton's law with coefficient h > 0 and 
a given temperature distribution f(w') on the arc F; this problem may be reduced [i] to the 
following boundary value problem for the Laplace equation: 

AT (w)=  O, wED; (2)  

0 - - T ( w ) - - h T ( w )  = O, wEint?;  
av ( 3 )  

2m 

T(w') = [(w'), w ' E r ;  (4)  

f u n c t i o n  f ( w ' )  i s  c o n t i n u o u s  on r .  

In the present paper we represent the solution of problem (2)-(4) in the form of a series 
expressed in terms of the system of functions {fln(W)}n=0: 

T (w) = ~ a.Q. (w), 
n=O 

possessing the following properties: 

a) all the a n are harmonic functions in D; 

b) a n satisfy, for w rexpi__i~] = , rE(O,  oo), 

the third kind: 
0 

~,~ (w) -- h ~  (w) = O; 
'Ow 

(5) 

a homogeneous boundary-value problem of 

(6) 

c) the set of functions {an}n= 0 possesses the property of completeness on the arc F. 

This method of solving problem (2)-(4) was proposed in [2]; it is close to the method 
presented in [3]. 

2. We decompose the set of functions {Q~(w)}~= 0 into two subsets, one of which, {a2n}~= 0, 
is symmetric and the other, {a=n_1}~=z, is antisymmetric with respect to the real axis: 
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-q.,,, (~) = ~-,,, (g), ~,~,,,-, (=,) : - - . % , _ ,  (g), ~ ~ D. 

We seek an(r exp i~) in the form: 

~.~ (r exp (kp)) = ~ A ~  r ~'~-''+/cos (~,o_~ -F j) % 
]=0 

(7) 

( 8 )  

f~,,_~ (r exp (iq>)) = ~ AJ2._~ rT'~ ,-1+i sin (~2.-~ -F j) % (9)  
j=0 

where we assume that ~ is a positive integral parameter and ~n and A n are real parameters. 
We note that the condition X n > 0 must be satisfied, for otherwise the functions ~n would 
be unbounded in D. It may be readily verified that the functions ~n of the form (8), (9) 
are harmonic in D. Substituting functions (8) and (9) into the condition (6), we obtain 
relations from which K, %n, and A n can be determined: 

s g s r:~2n+i (~2n --~--~ , (i0) A 7', r ~2n+i-1 s i n ( ) ~  + j) 2m (k,,,, -6 j) .'-,n --- h A~o. cos -{- ]) 2m 
/=0 /=0 

2= = =hw,., (11) 
i =0  

E q u a t i n g  c o e f f i c i e n t s  o f  l i k e  powers  o f  r on t h e  l e f t  and r i g h t  s i d e s  o f  Eqs. (10 )  and ( 1 1 ) ,  
we o b t a i n  

0 �9 ~ ~v2n_lA2n_l COS ~'~n-1 ~ O; ;%~A2~ sm ;~2~ _--- = 0, 0 = 
" 2m (12) 2m 

= hA~7,' c o s ( ~  -+- ] - -  1)--~- ~ ; (~.2~ -6 ]) A~. sin (~2= + ]) 2m " 2m 

(~2n-1 "-~ ]) A~n-1 cos ()v2n_ 1 --]- 1) 
/'_! g . 

= hA,2,,_l sin (s i + ] -- 1 ) 7  
~ . m  " - 2 m  ' 

]---~ 1, . . . ,  x; 

( 1 3 )  

(14) 

2m 2m (15)  

From relations (12) it follows that 

%~=mn, n=0, I, ..., (16) 

and from relations (15) and (16) we obtain the equation 

• = m. (17) 

Noting that the coefficients AnJ , n : 0, i, ... are determined to within an arbitrary factor, 
we put 

A~ = ! ,  n = O, I . . . .  ( 1 8 )  

From expressions (13) and (14) we then establish recursion relationships for the coeffici- 
cients An j+1, j = 0, I ..... m - i: 

COS j - -  

A~+I = h 2,n A~, n = o, 1 . . . .  ( 19 )  
mn q- ] q- 1 sin (] ~- 1) 

2m 
Thus, the functions ~n(W), n = 0, i, ... in Eqs. (8) and (9), with parameter values from 

Eqs. (16)-(19), satisfy the conditions a) and b) formulated in Sec. i. 

3. We show now that the system {~n(W')}~=0 is minimal [4] in the space ~2(P). In fact, 

-- { 2  ~G~mn+i~ in the closed disk ~ (~0 = {w= [w] < I}) we consider the set of functions ..... . 
I n~0 

i=0 
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Here B=nJ = A=nJ, n = 0, i, ...; B=n_lJ = -iA=n-lJ, n = i, 2, .... We assume the existence 
of numbers d0, dl, ..., dN, such that for arbitrary n o and r > 0 the following inequality is 
satisfied on ~0 : 

- -  d �9 . B';o  too+" m"+; (20)  
/'=0 n=0 /=0 

n : : n  0 

We introduce the notation 
N m 

i =0  n=0 / = o  
/z ~n  o 

and, at the_center of the disk, we represent the function @n0(W), holomorphic in~0 and con- 
tinuous in 9, by means of the Cauchy formula [5]: 

1 ~.jexp(iqo)) d (exp (Rp)). ( 2 2 )  
n; (0) --  2~i 0 exp (iqD) 

L e t  m ~ I ;  d i f f e r e n t i a t i n g  b o t h  s i d e s  o f  Eq.  ( 2 2 )  mn 0 and  ~m0-1  t i m e s ,  we o b t a i n ,  t a k i n g  
r e l a t i o n  ( 2 0 )  i n t o  a c c o u n t ,  c o n d i t i o n s  on  t h e  c o e f f i c i e n t s :  

Bm-I I 1 - - d n o - l B n ~ _ l l < e ,  I n o - l d . . - l [ <  8. ( 2 3 )  

If m = I, then, differentiating the expression (22) in succession, N + I; N, ..., i, 0 
times, we arrive at the system of inequalities 

I&vB~,I < ~, Idm + &v-~B~,-,I < ~ . . . .  , IB~o - -  d . o + , l  < 8, 
(24) 

l1 - -  d,,o_~B~~ < s . . . . .  Id~ + d+Boll < e, Idol < s.  
Inconsistency of conditions (23) and (24) is easily verified; but this means that inequality 

m 

(20) is not satisfied for w60~ Thus, the system {2Binwmn+il~176 is minimal in C(O~), 
) a=0 f=0 

which implies minimality of {fln(W' )}~=0 in ~f,(F). 

We now prove the following 

Proposition I. The set of functions {fln(W')}~=0 forms a Riesz basis in ~(F). 

We consider the series 

~-, (25) 
n = 0  

where Pn is given by the expressions- 

922, --= [ (cos 2nm~ -- e~n (w'))2d% n = 0, 1 ..... (26) 

P~"-* = .I (sin (2n - -  1) m e  - -  Q2n-1 (~t))2d~, n = 1, 2, . . . ( 2 7 )  
F 

From c o n d i t i o n s  ( 1 6 )  and  ( 1 7 )  i t  f o l l o w s  t h a t  

(+.) 9 ~ = 0  , n = 0 ,  1 . . . . .  ( 2 8 )  

i.e., series (25) converges; but this means that the system {~n(W')}~= 0 is close in the 
mean square sense to the system {cos 2nm#, sin(2n + l)m$}~=0, and is obviously a Riesz basis 
in ~(F) [6]. Proposition i is a consequence of a theorem of N. K. Bari [6] relating to 
stability of the property of a system to form a Riesz basis for all minimal systems close to 
mean square. 

4. We seek an approximate solution TK(w) of problem (2)-(4) as a partial sum of series 
(5): 

K 

T K (w) = ~ a ~ . ( w ) ,  ( 2 9 )  
n = 0  
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where the coefficients are determined from the condition of minimum deviation of TK(w ' ) 
from f(w') in the norm of the space ~2(F). From the results presented in [7] and also 
Proposition 1 it follows that for all n we have existence of the finite limit 

lira a~ = a~ 

convergence sequence and of the {TK(w')}K=0 on F as K + ~ to the function f(w'). 

From the properties of the coefficients a n described in [6] it follows that T(w) from 
Eq. (5) represents a solution of the boundary-valueproblem (2)-(4). 

5. The method of solution proposed admits certain generalizations. 

i ~ Let Do:lw:rexp(i~):r6[O,, I], ~EI0,, ~)} be the upper half of sector D, 

.,{w:exp(ig):gE( 0' 2~)} be the arc of its boundary~ and let the function T• be, 

tively, solutions of the following boundary-value problems: 

AT• (m) = O, w E Do; 

(30) 

let D, F o = 

respec- 

(31) 

0 - - h )  T• = O, w = rexp(ir qDE [0, ll; (32)  
Ov 

gg• (r) := 0, r 6 [0, 11; (33) 

T~(w') = [(m'), m' 6 r  o. (34) 

Here ~+T+= O--~T+, ~ _ T _ : T _ .  
Ov 

The sets of functions {~2n(W)}~n=0 and {~2n-i}~=i then satisfy conditions (31) and (32), 
and also, as a consequence of property (7), the equations2@+~2n(r) = 0, n = 0, i, .... and 
$C-~2n_1(r) = 0, n = i, 2, ... are valid. An approximate solution of problem (31)-(34) can 
be written in the form 

K K 
K Q 

T~ (m) = ~,~ aL~2~ (w), T!(w) : ~ a2._~ ~._~ (w), (35) 
n~0 n=l 

where the coefficients a~ are determined by the method of least squares. 

2 ~ When, instead of condition (4), we are given a nonhomogeneous condition of the 
second or third kind on the arc F in problem (2)-(4), 

0 - - T ( w ' ) = f ( w ' ) ,  w'EF;  (36) 
Or 

0 
- -  T (w') - -  hvT (w') = [ (w'), w' 6 F; (37)  
Or 

h r = const > 0 

we also seek an approximate solution in the form (29). 

6. Problem (2)-(4) was solved numerically for various values of the parameters m, h, 
and K and for a different form of function f(w') in condition (4). The controlling factor 
here was the mean-square error: 

= ( f  
P 

Results of our calculations for h = 1/2, f(w') = i, and K = i0 are shown in Figs. 1-3. 

In Fig. i results are shown for the case m = i (D, a semicircular region); the error 
6 = 3.47"i0-s; I is the boundary of domain D; isotherms T = const for T values 0.8, 0.85, 
0.9, and 0.95 correspond to curves a, b, c, and d, respectively. 
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Fig. i. Isothermsform= i. 
Fig. 2. Isotherms for m = 4. 

Fig. 2 
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Fig. 3. Temperature 
at angle vertex. 

In Fig. 2 results are shown for the case m = 4 (D, a sector with central angle ~/4); 
the error 6 = 4.32.10-3; I is the boundary aD; isotherms T = const for T values 0.4, 0.5, 
0.6, 0.7, 0.8, and 0.9 correspond to curves a, b, c, d, e, and f, respectively. 

Temperature T(O) at the vertex of the central angle of the sector is shown as a function 
of m in Fig. 3. 

NOTATION 

r, ~, polar coordinates; i, imaginary unit; w, complex conjugate of w; D, circular sec- 
tor; 3D, boundary of circular sector; ~/m, central angle of sector; int 7, arc 7 minus end- 
points; 8/37, derivative along exterior normal to contour; A, Laplace operator; T, temper- 
ature; h, heat transfer coefficient; C(~D), space of functions continuous on 8D;~= {w:lw I < 
I}, unit disk; ~2(F), space of functions square-summable on arc F. 
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